Subtracting multiples of 10 Spring B

We have learned how to subtract a ten from a multiple of ten and we know that the ones do not change. We used manipulatives, the hundred square and arrow cards to explore this but should hopefully know it in our heads

We have now moved onto subtracting multiples of ten:
60-30=70-40=90-40= (we relate to 6-3 7-4 9-4)
We do this with manipulatives, drawings, number square or mentally. We can draw 60 , cross out 30 and have 30 left.

We also work on missing numbers: $70-\square=30$
We talk about starting with 70, what did I take away to end up with 30. A good strategy is to count up from 30 to 70 and see what I added back on.

We have learned how to subtract a ten from any digit number and we know that the ones digit does not change. We used manipulatives, drawings, hundred square, arrow cards to explore this and some children know mentally (87-50 42-30)

72-10=62 (ones digit still 2 as we have only taken away 10 and no ones)
This week we have extended this to taking away multiples of 10 . The ones digit still does not change as we are only taking away tens.

We can do this on an empty number line:
Start
here
$72-50=22$

We can do it with manipulatives and practically take away or with drawings

We can do it with a hundred square

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

$64-40=$
The chn know that if we jump up 1 square we have taken away 10 as there are 10 numbers in each row. Put your finger on 64, jump up 10, 20, 30,40 and you land on 24. We only use this when the children fully understand how the hundred square can be used.

Missing numbers

$\square-10=45$ We add the 10 back on the 45 to see what we started with. We can do this on the number square or mentally
$85-\square=45$ We can use a numberline to work out what we subtracted

Or on the number square, put your finger on 85 , count back in tens until you get to 45. How many tens have you taken away? 4 tens $=40$

Inverses

The inverse rule is really important. The children need to understand that addition and subtraction are opposites or inverses. Addition can be done in any order but in subtraction the largest number must come first.
$6+7=13$
$7+6=13$
$13-7=6$
$13-6=7$
We often make up stories.
I built 6 sandcastles and my sister built 7. How many altogether? If my 6 got knocked down how many would be left?

I build my 6 back up, how many now? What if the sea knocked her 7 castles down?

Make 4 calculations with these numbers: $8 \quad 8 \quad 9 \quad 17$
(A sum is only an add, we never say a subtraction sum, it is a calculation)

