Cherry Maths Strategies Spring B

Data Handling－week 2.

We will be looking at tally charts，pictograms and block diagrams and learning how to collect and show data quickly and efficiently．

Tally charts：
Charts with marks used to represent numbers making it quick to count up totals．

Favorite Pets		
Pet	Tally Marks	Number
	H卅 胜	10
	IIII	4
	卅 I	6

You could keep tallies at home to familiarise your child with this way of recording numbers by making marks and practise counting in fives to help them when we count up the totals．

Pictograms：
Charts that use pictures to represent data．Each picture may represent $1,2,5$ or 10 ．

In this example each piece of fruit represents 1 child but if each piece represented 2 children then the pears would represent 14 children and the other fruits would represent 2 children each．

FRUIT	NUMBER OF CHILDREN WHO CHOSE IT
PEAR	
WATERMELON	
ORANGE	
APPLE	
BANANA	

Block diagrams：

We start by using towers of cubes to represent items then move on to drawing and interpreting block diagrams（the foundation for working with bar charts／graphs．）A block diagram has types of items on the x axis（horizontal）and number of items on the y axis（vertical）．

Each block may represent $1,2,5$ or 10 of each item． Children will use their knowledge of number lines and counting in multiples to work out what scales represent．

Weeks 3－6 to follow．

Cherry Maths Strategies Spring B

Addition and Subtraction Week 3.

We will add three single digit numbers together. The children will look for number bonds to ten to help them add more efficiently and know that they can add the numbers in any order.

It will be helpful to practise their pairs to ten at home.

$\left(\begin{array}{llllll}10+0 & 9+1 & 8+2 & 7+3 & 6+4 & 5+5\end{array}\right)$
For example in the calculation $8+4+2$ they should add the 8 and 2 together to make 10 and then add the 4 using place value to make 14.

Knowledge of doubles is also useful E.G. $6+2+6$ If they know double 6 is 12 then they can add the 2 to make 14.

Of course knowing their single digit number facts by heart will help them a great deal. E.G. $7+4=11 \quad 4+3=7$ etc

We will complete investigations where the children must apply their knowledge whilst reasoning to solve the puzzles.

The children will add two 2-digit numbers together. We will look at what happens when the ones digits total more than 10. E.G. $36+25$

They will use equipment or drawing out to split the numbers into tens and ones to help them add. They may exchange ten ones for a ten when necessary:

E.G.

$36+16$
Add the ones digits first so $6+6=12$

12 is the same as one ten and two ones \square

(The children will swap the 12 ones for a ten and two ones because this will be more efficient to calculate)

Now add up all the tens $30+10+10=50$ Add the two $50+2=52$

Subtraction
The children will subtract 2-digit numbers from each other.
They will again use their knowledge that a ten is the same as ten ones.
Using base 10/dienes (plastic tens and ones- children may draw these)

We have learned how to subtract two 2-digit numbers that do not cross ten using partitioning:
36-12 =
$30-10=20$
6-2 = 4
$20+4=24$

We will start to look at what happens when the ones digit on the second number is greater than the ones digit on the first number in the calculation. E.G. 34-16

We can take one ten away but there are not enough ones $\square \square$ so the children 'exchange' a ten for ten ones.

Now they can take away 16 by removing a ten and 6 ones.

